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A Neuro-Adaptive Variable Structure Control for Partially Unknown Nonlinear
Dynamic Systems and Its Application

Chih-Lyang Hwang and Cheng-Ye Hsieh

Abstract—If the unknown nonlinear dynamic system is not in
a controllable canonical form or of relative degree one, then the
derivative of the tracking error is unknown. The controller design
for these systems will be complex. In this paper, an estimator for
the unknown tracking error with order equivalent to relative de-
gree, is first designed, to obtain a sliding surface and to reduce
the number of unknown nonlinear functions required to learn. In
this situation, the total number of connection weight in neural-net-
works decreases. Furthermore, two learning laws with e-modifica-
tion are employed to ensure the boundedness of estimated connec-
tion weights without the requirement of persistent excitation (PE)
condition. The system performance can be better than that of other
control schemes required many learning functions. In addition, sta-
bility of the overall system is verified by Lyapunov theory so that
ultimate bounded tracking is accomplished. Simulation and exper-
imental results of four-bar-linkage system are presented to confirm
the usefulness of the proposed control.

Index Terms—Four-bar-linkage system, Lyapunov stability,
neuro-adaptive control, state estimator, variable structure control.

I. INTRODUCTION

I T IS well known that learning is a first step toward the intel-
ligent control. Learning has the capability of reducing the

uncertainties affecting the performance of a dynamic system
through system identification, thereby enhancing the knowledge
about the system so that it can be controlled more effectively.
One of the important intelligent control structures is identifi-
cation-based neural-network control. Considerable research has
been devoted to identification-based neural-network control or
modeling structures [1]–[10]. Each study has its own advantages
and disadvantages.

The current paper deals with a class of unknown affine non-
linear dynamic systems that are not necessary in controllable
canonical form or that have relative degree larger than one [11].
First, an estimator for the unknown tracking error with order
equivalent to relative degree, is designed to attain a sliding sur-
face and to reduce the number of unknown nonlinear functions
required to learn. Therefore, the total number of connection
weights in the neural-networks decreases as compared with the
other learning schemes (e.g., [4] and [5]). Furthermore, two
learning laws with e-modification are considered to guarantee
the boundedness of the connection weights, without the re-
quirement of PE condition. A suitable selection of learning and
e-modification rates can result in a better transient response
and effective learning of unknown functions [10].
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Due to the advantages of variable structure control (e.g., fast
response, invariance properties [3], [7], [13], [14]), a neural-net-
work-based variable structure control is constructed to improve
the system performance. Then the stability of the overall system,
including the controlled system, the estimator of tracking error,
and the neural-network-based variable structure control, is ver-
ified by Lyapunov theory. Finally, the simulations and exper-
iments for velocity control of the four-bar-linkage system are
presented to confirm the usefulness of the proposed controller.
As compared with the previous studies (e.g., [4] and [5]), the
proposed control is simple and effective. It is believed that the
proposed control can be applied to many control systems.

II. PROBLEM FORMULATION

Consider the following class of partially unknown nonlinear
dynamic systems:

(1)

where denotes the system state which is available;
and represent the system output and input; the

vectors and the scalar are unknown map-
pings: and , respectively. The system (1) is
assumed reachable aroundand observable at . How-
ever, it is not necessary to assume a controllable canonical form
and a relative degree one [11]. The system (1), with the relative
degree , is defined as follows:

(2a)

(2b)

where and denote the Lie derivatives
of the scalar in the direction of the vector fields and

with relative degree [15], [16]. Define the following
tracking error signals:

(3)

where , and represent the known and
bounded reference input up to derivatives. Because the
signals are unknown, the tracking error
signals should be estimated. First, (2) and (3)
are rewritten as follows:

(4a)
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Fig. 1. Control block diagram.

where

...
...

...

(4b)

It is assumed that the unknown scalar signals
and can be smoothly truncated outside of

(a compact subset in ). Hence, their spatial
Fourier transformations are absolutely integrable. Based on the
universal approximation theory (e.g., [2], [3], [9]), they are
approximated by the following radial basis function neural-net-
work (RBFN):

(5a)

where

(5b)

(5c)

or (5d)

(5e)

The information about for
is known. Furthermore

(6)

where is known. In fact, is regarded as the summation of
the class membership error, the aliasing error and the truncation
error [3]. The centers for and are
chosen as a normal distribution in the domain . The larger
the value of variance for and , is
selected, the smoother is around the corresponding center

. The problem is to develop a neuro-adaptive variable structure

control for a class of unknown nonlinear dynamic systems (1)
to track a time-varying trajectory (see Fig. 1).

III. CONTROLLER DESIGN

There are three sections discussing the controller design. To
estimate the unknown signal , a state estimator driving
by the first component of [i.e.,
which is available] is designed. The second section examines
the bounded tracking result theoretically. The main theorem of
neuro-adaptive variable structure control is reported in the final
section.

A. Estimator for Unknown Signal

The following state estimator is designed to estimate the
signal :

(7)

where denotes
the estimate of ,

and represents the learning for
. Subtracting (4a) and (4b) from (7), and using

(5a)–(5e) gives

(8a)

where

...
...

(8b)
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One can select the gains of the state estimator for
such that is Hurwitz. Given a posi-

tive definite symmetric matrix (denoted as ), there
exists a unique matrix such that the following Lyapunov
matrix equation (9) is satisfied:

(9)

Remark 1: If the estimator (7) is not employed to obtain
the unknown tracking error , some extra neural networks
should be used to approximate the signal (e.g., [5] and
[6]). Under these circumstances, the number of estimated con-
nection weights increases extremely. Then the convergent rate
of the closed-loop signal becomes sluggish and the instability of
closed-loop system probably occurs [2]–[11]. If , the es-
timator (7) is not needed. Hence, the stability of the closed-loop
system becomes simple to analyze.

B. Ultimately Bounded Tracking

A sliding surface is defined as follows:

(10)

where . Or , where
. The coefficients for

are chosen such that is Hurwitz. Rearrange (10) as
follows:

(11a)

where

...

(11b)

The following lemma discusses the stability of (11a) and
(11b) when and is small.

Lemma 1 [11]: If the dynamics of the sliding sur-
face (11a) and (11b) satisfies the following inequality

for , then , where
, .

C. Neuro-Adaptive Variable Structure Control

First, the estimated sliding surface is defined as follows:

(12)

Two update laws for connection weights are designed as fol-
lows:

(13a)

(13b)

where for and
is described in (14b). Let

(14a)

where

(14b)

if
otherwise

(14c)

(14d)

where . The following lemma examines the upper
bound of the proposed control.

Lemma 2: Because , the proposed con-
troller is then bounded by (15a)–(15d)

(15a)

(15b)

where

(15c)

(15d)

Proof: Substituting (12), (8a), (8b), (5a)–(5e) into (14b)
and (14d), and using the triangle inequality (e.g.,

,
and

), give the results.
Theorem 1: Consider the nonlinear dynamic system (1)

and the controller (12)–(14), and (7) with .
The domain is chosen large enough for the learning
of and . The overall system

and .
The following inequalities are satisfied:

and

(16a)

such that

(16b)

where

(16c)
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Fig. 2. Experimental setup.

Then are bounded and the
system performance satisfies

(17)

where is a 4 4 symmetric matrix with the entries in (16c)

(18)

(19)

(20)

Furthermore, the tracking performance bound is
, if the signal in satisfies .

Proof: See Appendix A.
Remark 2: The condition (16a)–(16c) implies that the gain of

the switching control (i.e., ) must be selected large enough
to deal with the uncertainties (i.e.,) connected with the equiv-
alent control (i.e., ). It also implies that the minimum
eigenvalue of estimator [i.e., ] must be chosen large
enough to cope with the uncertainties (i.e.,) and the switching
gain (i.e., ). However, too large eigenvalues of the estimator
probably result in poor transient response.

Remark 3: If the control input is not smooth enough, the
modification for can be

(21)

where is a small positive constant.

IV. SIMULATIONS AND EXPERIMENTS OFFOUR-BAR-LINKAGE

SYSTEMS

A. Experimental Setup

The four-bar-linkage system hardware mainly consists of
five parts: a direct-drive motor, a driver, a four-bar-linkage,
an AD/DA card and a personal computer (see Fig. 2).
The specifications of direct-drive motor are briefly intro-
duced as follows: rate speed 12.56 rad/s, maximum output
torque 7.653 kgm, power consumption 1.6 KVA, stiffness

rad/kgm and inertia kgm.
The four-bar-linkage system has the following specifi-
cations: m, m m

m, kg kg kg,
kgm, kgm and

kgm. Because the first linkage is fixed, the
information of and is not required. The torque constant

kgm/amp is achieved from the maximum torque
and the maximum current. The voltage conversion factor for
velocity and current are 0.55 rad/s/voltage and
amp/voltage, respectively. After sampling by a 12-bit A/D
card (e.g., PCL-1800), the resolution of velocity and current is

rad/s and amp, respectively. The
control cycle time for the proposed algorithm is 0.01 s.

B. System Analysis

The threshold voltage of direct-drive motor with four-bar-
linkage is about 1.15voltage. As compared with only direct-
drive motor inertia, the system with linkage load needs more
power and its static friction torque also increases. Moreover,
the sinusoidal response with the four-bar-linkage load in Fig. 3
reveals that the proposed system contains complex and time-
varying nonlinearities. The responses for different PID control
gains are not good; those are omitted due to the space limits.
That is, the only use of PID control cannot achieve an excellent
tracking result. This is one of the important motivations for the
present study.
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C. Simulations

The dynamics of the four-bar-linkage driven by a direct-drive
motor in a horizontal plane through a rigid coupling are de-
scribed by the following equations:

(22a)

(22b)

(22c)

where the symbols , , , and
denote effective inertia, linear damping of motor

and load, centrifugal and Coriolis, and unmodeled dynamics
included friction, disturbance and external torque, respectively.
The symbols and represent
motor inductance, resistance, back-emf constant, current,
angular position, and torque, respectively (see Appendix B for
details). Unmodeled dynamics is assumed as the following
friction torque [9], [17]:

(23)

where as , and , otherwise.
The sticking torque is modeled as follows:

.
(24)

The slipping torque is modeled as follows:

(25)

Rewrite the four-bar-linkage system (22a)–(22c) as the form of
(1) with the following definitions:

and

(26)

The system (22a)–(22c) has relative degree 2. From the
measurement, V/rad/s, . After a
model check in Fig. 3, the following system parameters are
set. Those are rad/s kgm,

kgm, rad/s,
kgms/rad,

kgms/rad, and H. The difference between the
real system and mathematical model is that a rigid coupling is
supposed in mathematical model. Therefore, an order reduction
of (22a)–(22c) can be obtained.

Mistry et al.paper [5] discussed neural-network control for a
similar system with two neural networks, i.e., one for identifi-
cation and the other for control. Its total number of connection
weights is 6050. The current paper uses

(a)

(b)

(c)

Fig. 3. Comparison of the open-loop sinusoidal responses between real system
(…) and mathematical model (—) for inputu(t) = u sin(2�ft) (voltage).
(a)u = 4; f = 0:2. (b)u = 6; f = 0:5. (c)u = 8; f = 0:8.

to learn the unknown nonlinear functions and
. Due to this, the control cycle time of [5] is 43.5

ms or 83.3 ms that is four (or eight) times greater than that
of the proposed control (i.e., 10 ms). The reference input is
assigned as rad/s. A compact subset
is defined as rad
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rad/s amp . After normalization of the
state, the center ofth kernel is , where

, and the width of th kernel is
. The control parameters are set as ,

,
, and .

The initial values of state, estimated state and connection
weight are set to be zero except . The simulation
results of the fourth process time are presented in Fig. 4. The
controller can make the system output track the reference
input in a satisfactory manner [see Fig. 4(a)]. The maximum
tracking error occurs in the neighborhood of zero velocity
because of the phenomenon of friction torque and backlash
of coupling. The control input of Fig. 4(b) is smooth enough.
The sliding surface and its corresponding estimated sliding
surface are shown in Fig. 4(c). It indicates that the estimate

is good enough for the controller design. The real non-
linear functions and their corresponding
learning neural-networks match
each other, but not discussed here. Although the total number
of connection weight is 252, they are satisfactory for the
controller design. Based on the result of Fig. 4, the controller
has the ability of reducing the uncertainties affecting the system
performance.

D. Experiments

The initial values of state, estimated state and connection
weight are the same as in the simulation case. The control pa-
rameters are set as

,
, and which are a little smaller than those in sim-

ulation. Similarly, after an effective learning the typical experi-
ment results are shown in Fig. 5. As compared with Figs. 4 and
5 and the previous study (e.g., [5]), the following conclusions
are drawn: 1) The maximum tracking error for experiment case
(i.e., 10.561% or 1.056 rad/s) is larger than that of simulation
case (i.e., 6.824% or 0.682 rad/s) because the dynamics of real
system is more complex than that of the mathematical model.
In [5], for a constant desired angular speed (e.g., 3.14 rad/s) the
maximum steady-state error is 28% (i.e., 0.879 rad/s) for con-
trol cycle time 83.3 ms and 20% (i.e., 0.628 rad/s) for control
cycle 43.5 ms. 2) The responses of control input, sliding surface
in experiment are similar with those of simulation. Again, these
are omitted due to space considerations.

For verifying the usefulness of the proposed controller, the
tracking for the trajectories with different frequencies is shown
in Fig. 6. The maximum tracking error for lower frequency (i.e.,
0.2 Hz) is 15.595% (i.e., 1.56 rad/s) that is larger than the re-
sult of 0.5 Hz case [see Fig. 5(a)]. The reason is that the fric-
tion phenomenon dominates at lower frequency [9], [17]. Simi-
larly, the maximum tracking error for higher frequency (i.e., 0.8
Hz) is 17.544% (i.e., 1.754 rad/s) that is larger than that of 0.5
Hz case [see Fig. 5(a)]. The reason is that the phase error be-
tween system output and desired trajectory increases as the fre-
quency of trajectory augments. The same result occurs in [5];
i.e., the steady-state errors for the desired angular speeds 1.57,
3.14, 6.28, and 15.7 rad/s cases are 178%, 25.5%, 23.9%, and
66.2% (or 2.8, 1.6, 3.0, and 10.4 rad/s), respectively.

(a)

(b)

(c)

Fig. 4. Simulation results. (a)r(t) (…) andy(t) (—). (b)u(t) (c) �(t) (…)
and�̂(t) (—).

Including the coupling dynamics in (22a)–(22c) will further
improve performance. Another approach is to develop an inte-
gral design as done in [18].

V. CONCLUSION

The class of proposed nonlinear unknown system studied is
not necessarily in a controllable canonical form or of relative de-

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 02:33:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 2, MARCH 2002 269

(a)

(b)

Fig. 5. Experimental results. (a)r(t) (…) andy(t)(—). (b)u(t).

gree one. An estimator for the tracking error is designed to obtain
a sliding surface and to decrease the number of unknown non-
linear functions required to learn. The total number of connec-
tion weights in the neural-network then reduces. In addition, two
learning laws with e-modification are employed to learn two Lie
derivative functions with relative degree. Explicit expression
for thecontrolparametersarealsoreported.Usingan information
ofnominalsystemoraniterative learningof thecontrolledsystem
can improve system performance. Stability of the overall system
including the dynamics of the state estimator, the learning law
for connection weights and trajectory tracking, is proved using
Lyapunov stability theory. Simulations and experiments with a
four-bar-linkage system confirm the usefulness of the proposed
controller. The proposed control scheme can also be applied to
other systems belonging to the same class of nonlinear systems.

APPENDIX A
THE PROOF OFTHEOREM 1

Define the following Lyapunov function:

(A1)

(a)

(b)

Fig. 6. The output responses of the proposed control for different frequencies.
(a)r(t) (…) andy(t) (—) for f = 0:2. (b)r(t) (…) andy(t) (—) for f = 0:8.

where
as . Taking the time deriva-

tive of (A1) gives

(A2)

Substituting (1), (4a), (5a), (8a), (8b), (10), and (13a) and (13b)
into (A2) gives

(A3)
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Substituting (12), (14a), (14b), and (9) into (A3) yields

(A4)

Continuous simplification of (A4) by using (8b) and (14d) and
the fact gives

(A5)

Because and an effective learning,
as . Taking the norm of (A5) and using the

relation ,
yields

(A6)

Then

(A7)

where and are described in (16a)–(20). It is assumed that
, where . For the positive definite of

, its principal minor must be greater than zero, i.e.,

if

then

(A8)

if

then

(A9)

if

then

(A10)

and if

then

(A11)

From (A8)–(A11) and the condition (16a)–(16c), the result to
accomplish is . Together with the condition
(16a)–(16c),
is achieved. Then are bounded and

.
Then are bounded and then is
bounded. Finally, if the condition is satisfied, based on
Lemma 1, .

APPENDIX B
THE PARAMETER VALUES OFFOUR-BAR-LINKAGE SYSTEM

(B1)
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(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)
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